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Identifying Putative Biomarkers 
Brian T. Luke (lukeb@ncifcrf.gov) 

This section describes the 10 methods currently 
employed to identify putative biomarkers, where a 
putative biomarker is defined as a feature whose 
intensity can distinguish some or all of the subjects 
in one State from those in another. In other words, 
the intensity ranges for the samples in each State 
should be different; the larger this difference the 
stronger the marker. Two examples of a marker are 
shown in the figure at the right. 

In Feature-a, the Cases have an intensity that span a 
total range of X while the Controls have a range t
is smaller by an amount Za. In Feature-b, both the 
Cases and Controls have a range of X, but the rang
for the Cases is shifted higher than the range for the
Controls by an amount Zb. If there are equal 
numbers of Cases and Controls, the maximum r
(X) is the same for both markers, and there is a 
uniform distribution of intensities in each State, the same number of samples will be 
distinguishable as long as Za=2Zb. For example, if X=100 and Za=20 (Zb=10), then 10% of the 
samples should be distinguishable. In Feature-a, 20% of the Cases should have an intensity that 
is larger than any of the controls. In Feature-b, 10% of the Cases will have an intensity above all 
Controls and 10% of the Controls will have an intensity below all Cases. Since in this example 
only 10% of all samples should be correctly distinguishable, this would be considered a very 
weak marker. As Za and Zb increase, the marker becomes stronger since it is able to correctly 
distinguish more of the samples. 
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For each of the methods described below there will be a table that examines the ability to detect 
for weak markers as a function of Za (2Zb) and the number of Cases and Controls. For this 
examination, X is set to 100 and Za is varied from 10 to 40 (Zb from 5 to 20). The first step is to 
estimate the maximum possible value that a given method can achieve for a feature that contains 
no information (Za=Zb=0) for a given number of samples. This is done by examining 10,000 
randomly generated features with intensities between 0.0 and 100.0. Then for each value of Za or 
Zb, 10,000 new features will be randomly generated and there will be a count of the number of 
times a feature has a score that is better than that obtained from the features with no information. 
Part of this table for the dtgini procedure is shown below. 
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Each Score 10a 10b 15a 15b 

30 0.333 1 1 8 1 

45 0.390 12 5 38 9 

60 0.410 8 2 81 6 

90 0.431 13 0 297 10 

150 0.462 952 34 6778 318 

300 0.483 9892 3746 10000 9634

The first column lists the number of Cases and number of Controls in these artificial features. 
The second column lists the minimum score (GINIsplit) obtained from 10,000 features with no 
information, and is an estimate of the minimum value one may expect. It should be noted that 
this value increases as the number of Cases and Controls increases, meaning that as the number 
of samples increases it becomes harder to get a meaningful separation of the samples using a 
one-node decision tree. The third column builds feature intensities Feature-a in the figure above 
with Za=10. Since this is a weak marker, only one of the 10,000 features produced a GINIsplit that 
was less that the best result obtained from features with no information for 30 Cases and 30 
Controls. If there are 300 Cases and 300 Controls, almost all of the features have a score that is 
better than was obtained from features with no information. Conversely, the fourth column 
shows that if 2Zb=10, the number of features that are better than random is significantly reduced; 
the 10,000 features with 300 Cases and 300 Controls only found 3746 with GINIsplit values that 
are less than random. 

A terse description and links to the 10 methods that examine the features for putative biomarkers 
are as follows. 

1. catboot (formerly known as fqual [Hab-05]) This method performs a Bootstrap analysis 
and determines the centroids for the remaining samples in each State. A distance-
dependent K-Nearest Centroid algorithm is used for the classification of the removed 
samples, where K is the number of States in the dataset.  

2. student (formerly known as impf [Hab-05]) This method performs a Student t-test to test 
for independence distributions for Cases and Controls.  

3. dtgini (formerly known as fqual [Hab-05]) This method examines each feature by using it 
in a single node decision tree using the GINI Index to determine the optimum cut point.  

4. dtinfg (formerly known as infgl [Hab-05]) This method examines each feature by using it 
in a single node decision tree using the Information Gain to determine the optimum cut 
point.  

5. nnfeat This method uses each feature to construct a Feed-Forward Back-Propagation 
Artificial Neural Network. Each network has a single input node (the feature's 
intensities), two processing nodes in the hidden layer and a single output node.  



6. chisq This method determines an approximate chi-square value by dividing the total 
intensity range into regions by requiring that there are at least five expected Cases and 
Controls in each region.  

7. kruswal This method performs a Kruskal-Wallis one-way analysis of variance using the 
ranks of the intensities for samples in each State.  

8. kolsmir This method performs a Kolmogorov-Smirnov test (K-S test) to measure the 
maximum difference in cumulative fraction plots for the Cases and Controls.  

9. extreme This method measures the maximum number of samples from a given State at 
either extreme of the intensity distribution.  

10. vartest This method is derived from the relevance index of Yip and coworkers [Yip-03].  
It finds features with a minimum intra-State variance relative to the total variance.  

Conclusions contain overall points relating to the results from all 10 methods of examining 
features. 
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